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SUMMARY

Sr research on the deuteron relativistic wave function.

*0&66ý Bethe and Salpeter's relativistic wave e o boundsystem

of two particles with spin i°sme very slight approximatons, the

solution of the infinite system of coupled integral equations _. .. IF

the explicit structure of the wave matrices oorresponding to the S and D statest,

t • 4r t The percentage of D state obtained is in gocd agreement with the experimental

result.
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i INTRODUCTION 6
We have already studied the problem of the determination of a relativis-

tic deuteron wave function (I). In this paper, we investigate the case of two
(2)Dirac nucleons with the Bethe and Salpeter equation formalism . The expansion

of the wave function in hyperspherical harmonics has been first introduced in
(3)the nucleon-nucleon scattering problem . It was used in our first paper for

a spinless deuteron. We employ here the PS (PS) meson theory with an interaction

invariant under rotations.

We obtain an infinite coupled system of radial equations for the

16 components of the wave function. In the first section, we develop some

calculations in order to obtain the equations corresponding to the J = 1 bound

neutron-proton state. Because of parity conservation, we can use selection

rules to simplify the equations,

In the second section, we analyze the structure of the integral

equations. There appear three quantum numbers L, m, n due to the expansion

in hyperspherical harmonics, of the three angles 0, ( , P, corresponding to the

four-vector p. The first one L is the orbital angular momentum ; the second m,

its projection over Oz. The last one n has no direct physical interpretation

its parity is conserved and it is responsible for the coupling between integral

equations. But it is very useful to note that this coupling is extremely weak

practically the lowest value for n is important and we can reduce the deter-

mination of the wave functions to the resolution of one rsytem of two homogeneous

coupled integral equations. The splitting of the wave matrix into S and D partý

becomes trivial.

In the third section, we use various methods to solve these equations.

The eigenvalue of the integral kernel possesses only discrete values and the

lower one is proportional to the coupling constant of nuclear forces. The

computations performed in the ladder approximation leads to values of E less
4n

than 8 (experimental value = 15). The inclusion in the interaction kernel of

1) M. Gourdin and J. Tran Thanh Van, Nuovo Cimento 14, 1051 (1959)
2) E. E. Salpeter and H. A. Bethe , Phys. Rev. 84, 1232 (1951)

3) M. Gordin, - Annales do Physique (;959)
- Nuovo Cimento 7, 338 (1958)

Y
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fourth-order terms appears as necessary as prohibitive from a practical point of

view.

In the last section, we present a simplified method to obtain a relati-

vistic wave function. The relativistic corrections are divided into two types.

The kinematical corrections and the properties of symmetry correctly describe

the spin structure of the Deuteron which is represented by an entirely known

matrix. The relativistic corrections about the dynamics of the system are

partially included in a scalar function which is equivalent, in a non relativist_,ý

limit, to the Hulthln's wave function. We hope this solution, essentially pheno-

menological, is reasonable and sufficiently simple to permit calculation. The

corresponding percentage of D state in the deuturon is 4 0/0 in agreement with

experimental results.

II flITEGRAL EXJATICNS for the DFJTERON WAVE FUNCTION

.1
II. 1. System of two bound nucleons with spin

The nucleon is represented by a four-component spinor and the two-nucleon

wave function4(p) is a 4 x 4 matrix, the 'direct product' in a loose sense of

the two spinors fcr the two particles.

This matrix satisfies the Bethe and Salpeter equation

(^ ( 1) Pi+ M)(Y( 2) P M 1 2 '( ) = .( y p 1  iY)( 'Y +p p i N ) (i ( )

( i( 2 + M 2)(P 2 )2  + M 2 ) p '

if we consider a PS (PS) coupling.

The four-moments p1, P 2 are related to the moment of the center of

mass P and the relative moment p through the equations

P = P1 + P2  2 p =p 1  P2

or p p

P 2 r+ p p2= _ p
2 2
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The matrices y(i) relative to the particle (i) act on )(p) from the left if

i = 1 and, after transposition, to the right if i = 2

y(2)4 () = ()

Ty being an usual Dirac matrix and y , its transpose.

Let us introduce the B matrix

T B 1

and the wave function

\DI)(p) 6 (p) B-1

then we get the simple relations

(.)-

y=

'Y(2)11= IT-

The new wave matrix 1!) (p) satisfies the integral equation

=(P) ( _w_,__) _ + iM) 5 ' Y5 (y-P2 + M d'

(P 2  + 2 + -P - 2 2

p4 P -

(2)

Let us write I \b(p) in a reduced form having four elements which are 2 X 2 matrices

4) Louis de Broglie : Thdorie gg6nrale des particules & Spin (Ndthode de fusion)
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Let us now express the 2 K 2 matrices in terms of the unit matrix and the Pauli

matrices

n2(p) = S (p) I + (p)

S22 (p) --s2(p) I + (5 V2(P)

tB(p) + C(p) , F(p) + G(p)I 12 (P) I + -I ÷
2 I12 2

B(p) - C(p) _F(p) - G(p)
Th (p)= +or"" 2 2

If we substitute these expressions for the reduced elements of 16(p) in equ. (2)
AAA

we get a system of coupled homogeneous integral equations which has already been

written down for the scattering problem (3)

Using the same method as for the problem of two particles without spin

we expand the scalar functions Sl(p), S2 (p), B (p), C (p) in hyperspherical

harmonics and the vector functions in vectorial hyperspherical harmonics. We

assume, as was done before, that the interaction kernel W (p,p') depends only

on the lengths of the four vectors p, p' and on the angle _ between them.

This assumption allows us to integrate over the angles e and k , the

hyperspherical harmonics, both scalar and vectorial, being orthonormalized.

When performing the integration over the third angle P we are led to introduce

a lot of auxiliary functions whi ch are the elements of a 16 X 16 matrix which

we call K(p ; J, n, n'). This matrix will eventually act on the 16 components

vector V (p) which was written as a 4 x 4 matrix itself. In the case of nucleonsV,.v

without spin, K was shown to be simply the function Eo(p ; 1, n, n').

We order the 16 components of \V(p) in an arbitrary way ; the non vanishing

elements of K indicate between what radial components of AP(p) a coupling does

exist. We have established in a formor work on the nuni]-on-nunleon sr•attering•{

the following results :



-5-

a) The K matrix is expressed in terms of four 8 x 8 sub-matrices. The

two non-diagonal ones are zero, the two diagonal ones refer to a definite value

of the parity, the total angular momentum J being a constant of the motion.

b) The sub-matrix of parity (-1)J is in turn exrressed in the same wE.:r,

in terms of two 4 x 4 sub-matrices lying along the diagonal referring respective-

ly to singlet (J = L, m = O) and triplet (J = L, m=± 1) states, m is the

azimuthal quantum number.

II. 2. The deuteron case : J = 1 state

For a deuteron in the ground state, J = 1 and parity is + 1. The wave

fur.ction will, a priori, have 8 components and K matrix will be the sub-matrix

8 X 8 of parity + 1.

Let us write in the following order the radial components A(p ; J L m n)

cf N\(p), omitting the index J equal to 1 and the index L when L is equal to 1

V1 (p; 2 m n) ; V1 (p; 0 m n) ; V2 (p; 2 m n) ; V2 (p ; 0 m n)
(3)

B (p ; m n) G (p ; m n) ; C (p ; m n) F (p ; m n).

On the other hand, the matrix K(p ; n n') is an integral over the angle P !f

another matrix R(p, p)

K (p ;n, n') = [ Fp2  sin 2 dp (4)A ýI 10 2 2 f2 )2 2 p2 c s
(p + DI +T) -_2 _ o

The indices •, -' are related respectively to the components X, .i. With the

above choice (3) for numbering the radial components A•(p ; 1, m, n) we have

0 for X=2, 4

= for 5=5, 6, 7, 8 (5)

PU 2 for Il, 3 .

The matrix R is given in the table I



Table I !. Natri.x - 6-
2Lin 2 _ p22o2p+(24 -) 21

1 1 R 12 =2VR R l 3 [ _ R1 4

R = p sin p (2M - R RI5 R7 1 i sin cos R = -R"1 2 6 \- 1 71 2 R17

R21 = 12 P'22 - '2I R23 024 = R13

R25 R 16 R26 1 15 R27 R 18 R28 p 17

-3 1 3 C ii32 R-,4 = R12

R35 = 6 = a 6  \f- 3 5 5 3 7 =R 2 8  R38 = - R 27

R41 0 R42 = Ri R43 = R21 R44 = + R22

R4 5 R- R5 R46 = R5 R47 R 3 848 = R17

P5 - 2 P 35 52 = 2 '36 13 =- 2 R15 R4 6- 2 R16

2 2R55 =p - ,

R,6 R R5 - oR••
6l = '52 R6 2 = - R5 1  R63 = - R4 R4 = R53

R6 5 =0 6  - 155  67 0 R -R57

R 7 1 = - 2 R1 7  P7 2 = - 2 R1 8  R73 2 R1 7  =-14 2 R 1 8

75 B- R7 76  o R7 = 2-p cos2o + _Y2 R 0

R18=-2l R82 2R 2 8  R83 2 R18 R84 2R17

R8 5 =0 R 8 6 R 5 7 %7 0 "W - '7
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The selection rules due to the paritr of the Gegenbauer polynomials show that

certain elements of K will be zero after integration over P. Thus, the com-

ponents A,# A2 , A3, A4 , A5F A6 will be real while the components A,7 , AB

will be imaginary ; we have n + n' = e + e' + 2 q for the former and

n + n' = t+ t' + 2 q + 1 for the latter.

Then, we obtain for the radial components AX (p ; m, n) an infinite

system of integral equations coupled by the indices n and .

AX (p ; m n) = o _ K,(p ; n n') 6n,(p,p') A (p' ; m n') p,3 dp'

(6)

III APPROXIMATE RESOLUTION of TIE SYSTEI1 OP IIEGPAL EQUATIONS

Using the same approximation methods as in the preceding article (i)

we propose to find a solution to the system of integral equations (6). We saw

that these equations were very weakly coupled with respect to the index n and

that the wave functions fell off very fast as n increased. The function W(jjV)

which is the scalar part of the interaction without the Dirac matrices corres-

ponds to the same function W(X,R') introduced for the simplified scalar problem.

Thus it turns out that the functions An (pp') are the same in the two cases.

Actually we have employed the ladder approximation but the arguments for the

convergence of series with the index n remain valid for physically reasonable

interactions. The falling off of 6n (pep') with n is very fast, we shall

decouple the equations and conserve for a given component only the term of the

smallest order in n.

111.1. Terms n = 0 and n' = 0

The relation connecting •, •', n, n' and q shows that, in this case,

only two components intervene : V1 (p ; 0 0 0) and V2 (p ; 0 0 0) which we call

V1 (p) and V2 (p). The system of integral equations (6) is then reduced to the

two coupled equations i
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vf (P) = XK22 (p) f' o(P'p,) V'(p,) p dp' + K24 (p)f A0 (pp') V(p') P,3dp]

V2 (P) = K42 (p) f 0(pP') V`1(p') P'3dp' + K44(P) Ao(p,p') V2(p') P,3dpl

(7)
Henceforth, by convention, K\(p) is the function K\ (p ; n, n')

corresponding to minimum values of n and n' for which it is not zero. Their

calculation becomes that of the functions E (p ; 0 0).

K 2 2 (p) = 4 4(P) --L(l - 0
4 3

K2 4 (p) =- [(1 + h(p)) + 4 MT Eo(P)
14

K p (1 + h(p)) + Eo(p)
442 4M

Recall

2Eo(p) =
0  (p 2 2 ( p2 2)2 2 M2 i/2

(p +hY (P +-Y) +(4

2
(p2t 2)2+(P 2 + Y2 +4p2M2 1

and the binding energy of deuteron -B ippears through the parameter y thus

def ined

2
y = MB.

To facilitate calculation we define two auxiliary functions I (p) and 12(P)

I, (p) 1 v3 dp

permitting us to write the system (7) as
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V (p)= 4K 22 (P) i(p) + K24 (p) 12 (p)]

(p) (p)(9)
V2 (p) = -K42 (P) i1(p) + K22 (p) 12(P)]

III. 2. Terms n =1, n' = 0

At this order of the approximation, two now components of the wave

matrix B(p ; 1 m l) and G(p ; 1 m l) appear. We call them B (p) and G (p) and

express them with the help of 11 and 12 .

B (p) = M K 2(p) (p) + K54 (p) I 2 (P)]

G (p) = aC (K 6 2(P) 'l(P) + K6 4(p) 12 (P)' (10)

The four new functions K \L(p) are then given in terms of El(p) by

(5 2(p) = 2 p M El(p) KB54 (p) = - 2 p M E1

K62(p) = - 2\2V p M El(P) K64 (p) = - 2V2 p M El(p)

where

h(p)
El(p) - (i - - ) Eo(p)

3

We can invert the equations (9)

1 r.
1 1 tWL[22 ' r-K24 V

I2 [- ~L 4 2 V1 + K. V2]

where we put

W (p) = K22 K44 -K24 K42
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and see that B (p) and G (p) are, at this point in the calculation, simple linear

combination of V1 (p) and V2 (p), the coefficients being expressed in terms of

the functions K .q(p).

Finally one should notice that the binding energy of the Deuteron being
very small (B = 2,23 MeV), the number(-y is much less than unity ( l '-r-)

K5 2 (p) and K6 2 (p) are thus negligible before K54(p) and K6 4 (P). Doing this,

we find a simple relation between B and G

G (p) = 2 VB (p) (11)

which is certainly valid to a very good approximation.

Ilio 3, Terns n = 0, n' = 1

The equations (7) are now modified t.y the addition of a coupling term

between V1 (p), V, (p) and B (p), G (p). We thus calculate a first correction

to the solutions of the equations (7).

If we introduce the auxiliary functions 13 (p) and 14 (p)

13 (p) -fA l(p,p') B (pt) p'3 dp'

14 (p) = fA 1 (pp') G (p,) p,3 dp'

the system (9) becomes

V1 (p) = 4K 2 2 11 +K24 12 +K 2 5 13 +K26 14
LI (12)

V2 (p) = OfK 4 2 I1+K4 12+K45 13 +46 14]

with

K25 (p) = p M E1 K2 6 (p) = -V2 K2 5 (p)

K4 5 (p) = ( K25 (p) K4 6 (p) = (-) K2 6 (p)
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The problem is then to solve the coupled system (10) and (12). By eliminating

B (p) and G (p) we obtain two coupled integral equations for V (p) and V2 (p)

alone. The difference between this system and (8) will enable us to test our

development in series with respect to n.

But, it is legitimate to neglect before unity. Relation (11) is

then valid and. the system (12) is equivalent to

V1 (p)= I22 + K2 4 12 - K2 5 131

V2 (P)= •[K42 Il + K4 4 12]'

The second equation (9) is not modified, so that, taking (8),(9),(ii)

into account, we get only one substitution.

K 24 (P) 60 (p,p') K• 24 (P) 6o(p,p')

. K05 (p) fA1 (pip,,) K 4(pit) 0 (p,, p,) p"3 dp"

which can be easily calculated in the plane (p, p') since all the elements are

knvOn.

III 4. Terms n = 2, n' = 0 (real)

In this case, te orbital angular mcmentum components of order 2 appear.

They are V1 (p ; 2 m 2) and V2 (p ; 2 m 2), which we call V 1 (p) and V2 +(p)

respectively. They are easily known once V1 (p) and V2 (p) have been calculated.

V1 +(p) = ( K1 2 (p) II(p)

(14)

V2+(p) = m K3 4 (p) 12 (p)

The two functions K1 2 (p) and K3 4 (p) are equal

p h (p) h
Kl2(P) = 34(p) = . p2 1 -h + EO (p)

3 2 10
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III. 5. Terms n = 2 n' = 0 (imaginary)

The two imaginary functions that we introduce here C(p ; 1 m 2) and

F(p ; 1 m 2) are to be multiplied by the function 2  It is easy to see

that in configuration space, the same thing happens. At the limit of equal times,

[ = 9and--621 (•) = 0. For that reason, we do not worry about these imaginary

functions.

III. 6. Conclusion

Taking into account in each case only the lowest terms in n and n', we

are led to the following programme

a) Solve the system (7) to obtain V1 (p), V2 (p), I, and 12
b) Calculate B (p) and G (p) by equations (10)

c) Calculate VB+(p) and V2 +(p) by equations (14)

IV SEPARATION into STATES 3S1 and 3D1

The wave matrix X(•) in our particular case has therefore the form

S+

2 2

B (p) (p) la G'-(

2 2

In the state of total angular momentum J = 1, it becomes

~M0 ~M0
(P)2 • = Vl,2 (p) o e 0 1 (0' + Vl,2 ( 2 1 p

B (p) -B (p) . () Y(e,, p)
14
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m n
The vectorial hyperspherical harmonics 21 (e, •, p) may be obtained from

VJ L -'

scalar hyperspherical harmonics by the relations

q m n 1 m n

[Mn. jm,n

J, J+I, 1 V(J-+-1)(2 J + 1) P P

J j-1 1 VWj + 1)(2 J + 1) - P pJ

We easily deduce the two relations

mn + mrn ,,m,n

(oep). J + 1 J, J+l, 1 + 1 P, _-l 11

-- ['/ V J ,•jn
mn 4 j mn J + 1 mn

0- JJ1 (Ce ) . Y - J+l, 1 Y 2 J + 1 J, J-l, 1

using the property L 0 , -e being the unitary vector in the direction p.
p p

Applying these equations for J = 1, the wave matrix becomes simply

)

• (P) = Ms(p, P) 0 I.o l(e, T) + M4(P, Y) • • l(e,y)

m

Here 2J L 1 are ordinary vector orthonormal spherical harmonics. The wave

matrices for the S and D states are given by
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(P) 1 B(p) -\12 G(p) sin 34 e4
T2 p

LjB(p) +Vi G(pj sin~ (5, V2 (P)

2 sin2p V +(p) 4B(p) + G(p)l sin P 3e

N 2 5 122 2 +

L -B .-) G(pj sin P 'j ' sin V(p\f -2pT P V 27p

It is then easy to calculate the proportion of S and D states by the integrals

Trace ýMS12 p3 dp sin2 P df

P Trace ( p) 2 dp

Tracef MI12 p dp sin 2P dP

TracefL dp

The integration over the angle P are immediate. After calculating

the traces we obtain

PS NS and = ND

Ns+ND Ns+N
NS +ND NS +ND

with

N2 =f v ( 2  ()12 + 1 IB(p)1+ p

0

ND = f 00jVi(P) 1 + 1V2+(p)12 1 4B( P)12+ 1 p' dp(
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V NUMERICAL RESOLUTION of INTEGRAL EQUATIONS in the LADDER APPROXIMATION

As we saw before, the possibility to decouple the equations with respect

to the index n focuses all the difficulties on the solving of the system of

coupled integral equation (7). After fixing the binding energy of deuteron at

its experimental value, we intend to determine the coupling constant and the

wave functions V1 (p) and V2 (p) from which we can express all the others by

quadratures.

V. 1. Approximate resolution

We substitute for the exact kernel &_n (p,p') an approximate and

separable one

(p'p)C= n (P,q) A_4q,P' )

choosing for q the average momentum of nucleons in the deuteron (q_' J). 2

We can then solve the new system exactly and we find O = 0,13 i.e. g
47t

the coupling constant of nuclear forces, is equal to 16.

V. 2. Kellog's method of iteration

We have made a numerical calculation on IBM 650 to solve the equations

by successive iterations. We thus define a series of values for (X at each stsge

of the iteration. The result is

2

Ocý-- 0,046 i.e. g :-6
47r

and the proportion of D state is

pDý 1 0/o .

We have verified that the develcpment with respect to n is excellent

as well. The solving of the system (13) instead of (7) leads us to
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!2
0C =0,048 i.ee _g !,5.

4n
2

We then obtain a clear disagreement with the experimental value g - 15
4jT

deduced for example from meson-nucleon scattering.

The most reaeorable explanation for this seems to be the inability of

the ladder approximation to describe this phenomenon. It would be necessary in

a meson theory to include fourth order terms. Unfortunately this calculation

is inextricable and we shall not do it although the formalism remains valid.

VI APPROXIMATE WAVE FUNCTIONS

The calculations with a kernel including the fourth order term being

inextricable, we have modified our method in order to obtain a deuteron wave
(5)

matrix available in concrete problems (5)

If we consider Bethe and Salpeter's equation

-- ' ( ) Y 2 (p,p') (d (p') dp'

-- Y ( 1)l - i)(Y(2)P2 - i) 5 5 fw %_ -I %A

we can see that there are 3 types of relativistic corrections

- the kinematical corrections take the relativistic energy and the spins

of the nucleons into account, they are included in the expressions (7( 1) - iM)

and (y(2)P2 - iM)

- the properties of symmetry are correctly represented by the matrices

(Y 5 which show that we have used a pseudo-scalar mesor.-nucleon interaction ;

- the dynamical corrections are included in the expression of the kernel

W (Pp').

In our previous calculation , we have precisely taken the first two

•) We are indebted to Professor M. Ldvy for this suggestion.
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kinds of correction into account. On the other hand, we have only partially

considered the relativistic effects in the dynamical corrections, assuming the

hypothesis that the interaction depends only upon the square of the space-time

distance between the two particles. In particular, we have used the ladder

approximation.

In separating the two types of corrections, we have obtained

a) a correct structure of the wave matrix - i.e. the distribution

between its different components - due only to the spin of the nucleons and to

the pseudo-scalar character of the interaction,

b) the wave functions V1 (p), V2 (p), which are approximative, but

which take some relativistic effects into account.

In order to simplify the integral equations, we keep only the leading

terms, and this enables us to obtain a simpler structure of the wave matrix.

Considering that

ýý ( 2

and V1 (p) V (p) -B2(p)

with a very good approximation, we can obtain the wave matrices MS and

1 - ( )p(1 - ý) sin e (a e)

M (I - h) sin P _34ep+ -(I-h)2 ,P)22M

a -1- h h)2 p 2 2_ ) 1sn_1- in (

MD = 2 1 + h P T(p)D p 2
N -2 8 ( (- flip(i sin2c•

.h 2 l h P 2  20~j sinp

(18)
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Fig. I : V• (p) in arbitrary units
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The only remaining unknown scalar function V1 (p) corresponds, in the

non relativistic approximation, to the wave function for a deuteron without

spin. We represent it graphically in fig. I.

The calculation of the immixture of D state gives 4 0/o, which is in

satisfactory agreement with experiments. We think that this very phenomeno-

logical determination of the deuteron wave function is better than the preced-

ing one. It amounts to writing the wave matrix with the help of a scalar

function resembling that of Hulth~n, ard known matrices describing a structure

bound to the existence of nucleon spin. In other words, the matrices M1S and N

express the coupling between the states 3S1 and 3 D1 of Deuteron and include
relativistic effects inside the Deuteron which are included in V1 (p), a func-

tion of the same type as A (p), the solution corresponding to the problem

without spins.

VII CONC.USION

We have developed a formalism to determine the relativistic deuteron

wave function and the coupling constant of nuclear forces from the binding

energy of the deuteron which has been experimentally determined.

We have used the interaction given by the meson theory about nuclear

forces in the ladder approximation of second order. The theoretical results

make us foresee a coupling constant twice too small and this does not allow us

to take too seriously the results obtained about the wave function.

We have tried to consider the mass of meson 71 as a phenomenological

parameter. The most favourable results, corresponding to 4 = 0,1 (g 2/41T z7

and pD"e 1,5 0/o) show that the coupling constant as well as the proportion of

D state are parameters which vary extremely slowly with p.. Besides, this has

been verified in the diffusion problem.

We have also thought of adjoining an arbitrary phenomenological term

respecting the conditions of invariance to the mesonic term of second order ;
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an attempt has been made but was not very conclusive ; perhaps, there are, after

all, some attempts to be made in this direction, but the justification and the
theoretical origin of such terms seem to be extremely problematical and finally

doomed to failure.

With extremely weak approximations, it is possible to give to the wave

matrix a structure entirely known from one scalar function only. This method

leads us to a very simple form and will permit numerical computations. Parti-

cularly, the most immediate and interesting application is the calculation of
the elastic electron deuteron scattering cross section in the impulse approxi-

mation. The problem becomes very clear to understand. We know how the inter-

action acts on the neutron and on the proton and all the trace calculations can

be performed before integration. The modifications due to the spin of the

nucleons will appear naturally and the relativistic corrections will be rapidly.

evaluated.


